What is nonclassical about uncertainty relations?

Gdańsk - 03/08/2022

Lorenzo Catani

Joint work with Matt Leifer, Giovanni Scala, David Schmid and Rob Spekkens

arXiv:2207.11779

What is *contextual* about uncertainty relations?

Gdańsk - 03/08/2022

Lorenzo Catani

Joint work with Matt Leifer, Giovanni Scala, David Schmid and Rob Spekkens

arXiv:2207.11779

Contents

- Motivation
- Uncertainty relations
- Operational theories
- Ontological models and Noncontextuality
- Main result
- Conclusion

Contents

- Motivation
- Uncertainty relations
- Operational theories
- Ontological models and Noncontextuality
- Main result
- Conclusion

Motivation

• The basic phenomenology of features usually considered as truly nonclassical is exhibited in theories admitting of a noncontextual ontological model.

Motivation

Phenomena arising in Spekkens' toy theory	Phenomena not arising in Spekkens' toy theory
Noncommutativity	Bell inequality violations
Coherent superposition	Noncontextuality inequality violations
Collapse	Computational speed-up (if it exists)
Complementarity	Certain aspects of items on the left
No-cloning	
No-broadcasting	
Teleportation	
Remote steering	
Key distribution	
Dense coding	
Entanglement	
Monogamy of entanglement	
Choi-Jamiolkowski isomorphism	
Naimark extension	
Stinespring dilation	
Ambiguity of mixtures	
Locally immeasurable product bases	
Unextendible product bases	
Pre and post-selection effects	
Interference	
Elitzur-Vaidman bomb tester	
Wheeler's delayed-choice experiment	
Quantum eraser	
And many others	

R. W. Spekkens, in Quantum Theory: Informational Foundations and Foils, pp 83-135, Springer Dordrecht (2016).

^{*}L. Catani, M. Leifer, D. Schmid and R.W. Spekkens, arXiv:2111.13727 (2021).

Motivation

 The basic phenomenology of features usually considered as truly nonclassical is exhibited in theories admitting of a noncontextual ontological model.

Which aspects of those phenomena witness contextuality?

[8] D. Schmid and R. W. Spekkens, Phys. Rev. X 8, 011015 (2018).
[9] K. Flatt, H. Lee, C. R. i. Carceller, J. B. Brask, and J. Bae, arXiv preprint arXiv:2112.09626 (2021).
[10] C. R. I. Carceller, K. Flatt, H. Lee, J. Bae, and J. B. Brask, arXiv preprint arXiv:2112.09678 (2021).
[11] M. Lostaglio and G. Senno, Quantum 4, 258 (2020).
[12] M. F. Pusey and M. S. Leifer, arXiv preprint arXiv:1506.07850 (2015).
[13] M. F. Pusey, Phys. Rev. Lett. 113, 200401 (2014).
[14] R. Kunjwal, M. Lostaglio, and M. F. Pusey, Phys. Rev. A 100, 042116 (2019).
[15] M. Lostaglio, Phys. Rev. Lett. 125, 230603 (2020).

Motivation

 There exist theories that manifest uncertainty relations but also admit of a noncontextual ontological model.

Which aspects of uncertainty relations witness contextuality?

Contents

- Motivation
- Uncertainty relations
- Operational theories
- Ontological models and Noncontextuality
- Main result
- Conclusion

Uncertainty relations

"Product" uncertainty relations in quantum theory

W. Heisenberg (1901-1976)

H.P. Robertson (1903-1961)

Can be trivial

Uncertainty relations

"Sum" uncertainty relations in quantum theory

In the case of Pauli X and Z measurements,

$$\Delta X^2 + \Delta Z^2 \ge 1.$$

Given that
$$\ \Delta X^2=\langle X^2\rangle-\langle X\rangle^2=1-\langle X\rangle^2$$
 and $\ \Delta Z^2=\langle Z^2\rangle-\langle Z\rangle^2=1-\langle Z\rangle^2$,

$$\langle X \rangle^2 + \langle Z \rangle^2 \le 1.$$

Contents

- Motivation
- Uncertainty relations
- Operational theories
- Ontological models and Noncontextuality
- Main result
- Conclusion

Operational theories

Operational theory in a prepare and measure scenario:

Preparation
$$P$$

$$\vec{s}_P$$

Measurement and outcome
$$M, y$$

$$\vec{e}_{y|M}$$

Predicted statistics
$$\ \mathbb{P}(y|M,P)$$

$$\vec{s}_P \cdot \vec{e}_{y|M}$$

Operational theories – examples

Qubit theory

$$\langle X \rangle^2 + \langle Z \rangle^2 \le 1$$

Operational theories – examples

Stabilizer theory

$$|\langle X \rangle| + |\langle Z \rangle| \le 1$$

Operational theories – examples

η -depolarized qubit theory

$$\mathcal{D}_{\eta}(\rho) \equiv (1 - \eta)\rho + \eta \frac{\mathbb{I}}{2}$$

$$\langle X \rangle^2 + \langle Z \rangle^2 \le (1 - \eta)^2$$

Operational theories – examples

Gbit theory

$$|\langle X \rangle| \le 1, |\langle Z \rangle| \le 1$$

Operational theories – examples

Simplicial theory

$$|\langle X \rangle| \le 1, |\langle Z \rangle| \le 1$$

Examples: comparison of uncertainty relations

Legend

 $i = (1 - \frac{1}{\sqrt{2}})$ -depolarized qubit theory ii = stabilizer theory iii = qubit theory iv = gbit theory

Contents

- Motivation
- Uncertainty relations
- Operational theories
- Ontological models and Noncontextuality
- Main result
- Conclusion

Ontological models and Noncontextuality

Ontological model of an operational theory

Each system \longrightarrow ontic state space Λ describing possible ontic states $\lambda \in \Lambda$.

Preparation
$$P \longrightarrow \mu(\lambda|P)$$

$$\vec{\mu}_P$$

Measurement and outcome
$$\,M,\;y\,\longrightarrow\,\xi(y|M,\lambda)\,$$
 $\,\longrightarrow\,$ $\,\vec{\xi_{y|M}}$

Predicted statistics
$$\mathbb{P}(y|M,P) = \sum_{\lambda \in \Lambda} \xi(y|M,\lambda)\mu(\lambda|P)$$
 \longleftrightarrow $\vec{\xi}_{y|M} \cdot \vec{\mu}_P$

Ontological models and Noncontextuality

Preparation noncontextuality

• Two preparations P,P' are operationally equivalent, $P\simeq P'$, if $\mathbb{P}(y|M,P)=\mathbb{P}(y|M,P') \ \ \forall M.$

In a preparation noncontextual ontological model,

$$P \simeq P' \implies \mu(\lambda|P) = \mu(\lambda|P').$$

• In particular,

$$\sum_{i} w_{i} \vec{s}_{i} = \sum_{j} w'_{j} \vec{s}'_{j} \implies \sum_{i} w_{i} \vec{\mu}_{i} = \sum_{j} w'_{j} \vec{\mu}'_{j}.$$

Ontological models and Noncontextuality

Why is it a good notion of classicality?

- Instance of Leibnizian methodological principle / no-fine tuning.
- Connected to locality and Kochen-Specker noncontextuality.
- Connected to positivity of quasiprobability representations.
- Connected to simplex embeddability in GPTs.
- Emerges in the presence of sufficient noise.
- It is empirically testable.
- Its violation is connected to quantum computational advantages.

Contents

- Motivation
- Uncertainty relations
- Operational theories
- Ontological models and Noncontextuality
- Main result
- Conclusion

How to link uncertainty relations and contextuality?

Problem:

Uncertainty relations — single state.

Contextuality — requires operational equivalences (at least 4 states).

How to link uncertainty relations and contextuality?

Solution:

Consider uncertainty relations for a state that satisfies the condition of A_1^2 -orbit-realizability.

The A_1^2 -orbit-realizability condition

- 1. The state has equal predictability counterparts.
- 2. The state manifest operational equivalences with such counterparts.

Example in the qubit theory:

1.
$$\langle X \rangle_{\vec{s}_1} = -\langle X \rangle_{\vec{s}_2} = -\langle X \rangle_{\vec{s}_3} = \langle X \rangle_{\vec{s}_4},$$

 $\langle Z \rangle_{\vec{s}_1} = \langle Z \rangle_{\vec{s}_2} = -\langle Z \rangle_{\vec{s}_3} = -\langle Z \rangle_{\vec{s}_4}.$

2.
$$\frac{1}{2}\vec{s}_1 + \frac{1}{2}\vec{s}_3 = \frac{1}{2}\vec{s}_2 + \frac{1}{2}\vec{s}_4$$
.

Main result

In any operational theory, if one can find a pair of measurements, X,Z, and a state that satisfies the condition of A_1^2 -orbit-realizability, then noncontextuality implies that $|\langle X \rangle| + |\langle Z \rangle| \leq 1$.

Theories with A_1^2 -symmetry

If *all* states in an operational theory satisfy the condition of A_1^2 -orbit-realizability we say that the theory has A_1^2 -symmetry.

Examples:

Noncontextuality and uncertainty relations

For theories that have A_1^2 —symmetry our bound is a constraint on the form of the *ZX-uncertainty relation* within such theories.

Examples: comparison of uncertainty relations

Legend

 $i = (1 - \frac{1}{\sqrt{2}})$ -depolarized qubit theory ii = stabilizer theory iii = qubit theory iv = gbit theory

$$|\langle X \rangle| + |\langle Z \rangle| \le 1$$

Generalization to three measurements

In any operational theory, if one can find a triple of measurements, X,Y,Z, and a state that satisfies the condition of A_1^3 -orbit-realizability, then noncontextuality implies that $|\langle X \rangle| + |\langle Y \rangle| + |\langle Z \rangle| \leq 1$.

Example of A_1^3 -orbit-realizability in qubit theory:

Generalization to three measurements

Contents

- Motivation
- Uncertainty relations
- Operational theories
- Ontological models and Noncontextuality
- Main result
- Conclusion

Conclusion

• Under the condition of A_1^2 -orbit-realizability, noncontextuality bounds the functional form of the ZX predictability tradeoff below a linear curve.

- The functional form of an uncertainty relation can witness contextuality.
- If one takes noncontextuality as the notion of classicality, it is not the lack of perfect joint ZX predictability that witnesses nonclassicality, but the greater joint predictability for states satisfying A_1^2 -orbit-realizability.

Follow-up work: what is nonclassical about interference phenomena?

Extra slides

The noncontextual bound

The case of three measurements

Some references

This work:

L. Catani, M. S. Leifer, D. Schmid, R. W. Spekkens, arXiv: 2111.13727 (2021).

Epistemically restricted theories:

R. W. Spekkens *Phys Rev A* **75** (3): 032110 (2007).

S. Bartlett, T. Rudolph, R. W. Spekkens, Phys Rev A 86, 012103 (2012).

R. W. Spekkens, in Quantum Theory: Informational Foundations and Foils, pp 83-135, Springer Dordrecht (2016).

L. Catani, D. E. Browne, New J. Phys. **19**, 073035 (2017).

What's truly nonclassical about quantum theory:

L. Catani, M. S. Leifer, arXiv:2003.10050 (2020).

D. Schmid, J. Selby, R. W. Spekkens, arXiv:2009.03297 (2020).

What is non-classical about quantum interference?

In a follow-up work we show that the precise trade-off between visibility of fringes $\mathcal V$ and which-way distinguishability $\mathcal D$ in any preparation noncontextual model is linear, $\mathcal V+\mathcal D\leq 1$, while in quantum theory it is quadratic (Englert inequality), $\mathcal V^2+\mathcal D^2\leq 1$.

What is non-classical about quantum interference?

It is possible to provide a classical account of the TRAP phenomenology of quantum interference. However, reproducing the precise trade-off between visibility and distinguishability in quantum theory requires contextuality.