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Separable states and Schmidt decomposition

Definition: A pure state ρ ∈ B(Cd1 ⊗ · · · ⊗ Cdn ) is
called separable if it is represented by a product state
vector:

ρ = |ψ1 ⊗ · · · ⊗ ψn⟩⟨ψ1 ⊗ · · · ⊗ ψn| (1)

Definition: A mixed state ρ ∈ B(Cd1 ⊗ · · · ⊗ Cdn ) is
separable if it is a convex combination of pure
separable states:

ρ =
∑
i

pi

∣∣∣ψ(i)
1 ⊗ · · · ⊗ ψ

(i)
n

〉〈
ψ
(i)
1 ⊗ · · · ⊗ ψ

(i)
n

∣∣∣ (2)

A state not being separable is called entangled.

In 2× 2 and 2× 3 we can easily check separability of
a state. In general situation only necessary
conditions are known.

Schmidt decomposition: A vector |Ψ⟩ ∈ Cd1 ⊗ Cd2

can be decomposed as: |Ψ⟩ =
∑min(d1,d2)

i=1 λi |ei⟩ ⊗ |fi⟩,
where ⟨ei|ej⟩ = δij , ⟨fi|fj⟩ = δij and

∑
i λ

2
i = 1.

(direct consequence of Singular Value Decomposition,
valid only for bipartite systems).

It generalises to decomposition of a bipartite state:

ρ =

min(d21,d
2
2)∑

i=1

λiFi ⊗Gi, (3)

where ⟨Fi|Fj⟩HS = δij , ⟨Gi|Gj⟩HS = δij ,
∑

i λ
2
i = 1

and Fi’s and Gi’s are hermitian.

(not a separable decomposition - Fi and Gi in general
not positive!)
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Entanglement witnesses and positive maps

Definition: An observable W ∈ B(Cd1 ⊗ · · · ⊗ Cdn )
is called entanglement witness if Tr(ρW ) ≥ 0 for all
separable ρ’s, but W ̸≥ 0.

If Tr(Wρ) < 0, then ρ has to be entangled. We say
that W detects entanglement in ρ.

For any entangled state ρ there exists an
entanglement witness W detecting it.

ρ1

Tr(W1ρ) = 0ρ2

Tr(W2ρ) = 0

A map Φ : B(Cd1 ) → B(Cd2 ) is called positive (P), if
∀ρ ∈ B(Cd1 ) ρ ≥ 0 ⇒ Φ(ρ) ≥ 0.

Positive map criterion: A state ρ ∈ B(Cd1 ⊗ Cd2 ) is
separable iff ∀Φ-positive (Id1 ⊗ Φ)(ρ) ≥ 0.

A map Φ : B(Cd1 ) → B(Cd1 ) is called completely
positive (CP), if ∀d Id ⊗ Φ is positive.

(completely positive and trace-preserving maps are
known as quantum channels).

The Choi-Jamio lkowski isomorphism relates a P
but not CP map Φ to entanglement witness WΦ.

Positivity of (Id1 ⊗ Φ)(ρ) is equivalent to positive
expected value of a family of entanglement witnesses:
{A⊗BWΦA

† ⊗B†}.
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ρ1

Tr(W1ρ) = 0ρ2

Tr(W2ρ) = 0

A map Φ : B(Cd1 ) → B(Cd2 ) is called positive (P), if
∀ρ ∈ B(Cd1 ) ρ ≥ 0 ⇒ Φ(ρ) ≥ 0.

Positive map criterion: A state ρ ∈ B(Cd1 ⊗ Cd2 ) is
separable iff ∀Φ-positive (Id1 ⊗ Φ)(ρ) ≥ 0.

A map Φ : B(Cd1 ) → B(Cd1 ) is called completely
positive (CP), if ∀d Id ⊗ Φ is positive.

(completely positive and trace-preserving maps are
known as quantum channels).

The Choi-Jamio lkowski isomorphism relates a P
but not CP map Φ to entanglement witness WΦ.

Positivity of (Id1 ⊗ Φ)(ρ) is equivalent to positive
expected value of a family of entanglement witnesses:
{A⊗BWΦA

† ⊗B†}.



Introduction Realignment criterion and beyond Our result - linear witnesses from non-linear criterion

Entanglement Witness measuring and partial transposition criterion

One can always decompose W ∈ B(Cd1 ⊗ · · · ⊗Cdn ) as

W =
∑
i

A
(1)
i ⊗ · · · ⊗A

(n)
i , where Ai ∈ B(Cdi ) (4)

ρ

A
(1)
1

i1

A
(2)
2

i2

. . . A
(n)
n

in

Bell-type experiment, one expected value instead of
(d1d2)2 − 1 like in full-state tomography.

Transposition is a P but not CP map ⇒

A state ρ is separable, (I ⊗ T )ρ ≥ 0.

(positive partial transposition - PPT)

For systems 2× 2 and 2× 3 also ⇐.

In higher dimensions exists PPT entangled states.

Other criteria or other maps are necessary to detect
such entanglement.
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Realignment criterion and its witnesses

Definition: Trace norm of a real matrix A is
defined as ∥A∥1 = Tr

√
AAT .

• for positive A: ∥A∥1 = TrA, in general: sum of
singular values,

• ∥|ψ⟩ ⟨ϕ|∥1 = |ψ| · |ϕ|.

Let {G(k)
i }d

2
k

i=1 be an orthonormal hermitian basis of

B(Cdk ) such that G
(k)
0 = Idk/

√
dk.

Definition: We define the correlation tensor of ρ as:

C(ρ)i1,...,in = Tr
(
ρG

(1)
i1

⊗ · · · ⊗G
(n)
in

)
(5)

if n = 2 it is d21 × d22 matrix of coordinates of ρ.

Observe, that C(ρ1 ⊗ ρ2) is of rank 1
⇒ ∥C(ρ1 ⊗ ρ2)∥1 = ∥ρ1∥HS · ∥ρ2∥HS ≤ 1.

Due to triangle inequality and uniformness, the same
bound is valid for any separable state, hence we have
proven:

Realignment criterion: If ρ (bipartite) is separable,
then ∥C(ρ)∥1 ≤ 1.

Property: ∥A∥1 = maxO∈O(d1,d2) ⟨A|O⟩HS
(consequence of SVD).

Hence:

∥C(ρ)∥1 = max
O∈O(d1,d2)

Tr(ρ
∑
ij

G
(1)
i ⊗G

(2)
j Oij) ≤ 1 (6)

∀O ∈ O(d1, d2) Tr(ρ(I −
∑
ij

G
(1)
i ⊗G

(2)
j Oij)) ≥ 0 (7)

and the realignment criterion is equivalent to family
of witnesses:

WO = I −
∑
ij

G
(1)
i ⊗G

(2)
j Oij , (8)

parametrised by isometry matrices.
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Enhanced realignment criterion and other C-based criteria

These witnesses can be strengthen by a non-linear
correction:

W̃O = I −
∑
ij

G
(1)
i ⊗G

(2)
j Oij −

1

2
(Trρ2A +Trρ2B). (9)

Such family gives rise to the following:
Enhanced realignment criterion: If ρ (bipartite) is
separable, then

∥C(ρ− ρA ⊗ ρB)∥1 ≤
√

1− Trρ2A

√
1− Trρ2B (10)

Enhanced realignment criterion turns out to be the
strongest effectively computable simplification of
Correlation Matrix Criterion.
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Introduction Realignment criterion and beyond Our result - linear witnesses from non-linear criterion

Generalisation of the linear criteria arXiv:2001.08258

Redefine: Cx,y = diag{x, 1, . . . , 1}Cdiag{y, 1, . . . , 1}.
Then for ρ (bipartite) separable:

∀x, y ∥Cx,y∥1 ≤

√
dA − 1 + x2

dA

√
dB − 1 + y2

dB
(13)

As special cases we have:

• x = y = 0 de Vincente

• x = y = 1 realignment

• x = y = 2 ESIC

For appropriately chosen ρ ∈ B(C3 ⊗ C3):

Generalising to multipartite case, one has problem
defining trace norm.

There is no SVD and singular values for
multidimensional matrices.

∥A∥1 = maxO∈O(d1,...,dn) ⟨A|O⟩HS - but what is
multidimensional isometry?

∥A∥1 = max
M∈B(Cd1⊗···⊗Cdn )

⟨A|M⟩HS

∥M∥sup
(14)

∥M∥sup = sup
x1,...,xn:

∥x1∥=···=∥xn∥=1

⟨x1 ⊗ · · · ⊗ xn|M⟩ (15)

We have proven the following: for ρ - separable:

∀x1, . . . , xn ∥Cx1,...,xn∥1 ≤
∏
i

√
di − 1 + x2i

di
(16)
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Introduction Realignment criterion and beyond Our result - linear witnesses from non-linear criterion

Limit of bipartite case arXiv:2002.00646

We find a family of witnesses corresponding to our criterion:

WO,x,y = axyG
A
0 ⊗GB

0 + xGA
0 ⊗

( ∑
β>0

O0βGB
β

)
+ y

( ∑
β>0

Oα0GA
α

)
⊗GB

0 +
∑

α,β>0

OαβGA
α ⊗GB

β , (17)

where axy =
(√

dA − 1 + x2
√
dB − 1 + y2 + xyO00

)
. limx,y→∞O00 = −1, otherwise limWO,x,y ∼ I ⊗ I.

We take:

O =

[
−
√

1− η2/r2 η/r vT

η/r u O

]
(18)

(up to O(r2)), where u and v are unit vectors satisfying u = Ov/
√

1− η2/r2
r→∞−−−−→ Ov and get the limit:

W∞ =
(dB − 1) cot θ + (dA − 1) tan θ + η2 sin θ cos θ

2

IdA√
dA

⊗
IdB√
dB

+ η cos θ
IA√
dA

⊗
∑
β>0

vβGB
β

+ η sin θ
∑
α>0

(Õv)αGA
α ⊗

IB√
dB

+
∑

α,β>0

ÕαβGA
α ⊗GB

β (19)



Introduction Realignment criterion and beyond Our result - linear witnesses from non-linear criterion

Equivalence of criteria arXiv:2002.00646

First we prove, that (the simple part):

∥C(ρ− ρA ⊗ ρB)∥1 ≤
√

1− Trρ2A

√
1− Trρ2B ⇒ ∥Cxy(ρ)∥1 ≤

√
dA − 1 + x2

dA

√
dB − 1 + y2

dB
(20)

for all x, y. Hence no correlation tensor based criterion can detect more that the enhanced realignment
criterion.

Now we consider the limit witnesses:

W∞ =
(dB − 1) cot θ + (dA − 1) tan θ + η2 sin θ cos θ

2

IdA√
dA

⊗
IdB√
dB

+ η cos θ
IA√
dA

⊗
∑
β>0

vβGB
β

+ η sin θ
∑
α>0

(Õv)αGA
α ⊗

IB√
dB

+
∑

α,β>0

ÕαβGA
α ⊗GB

β (21)

and look for the minimum of their expected values for a given state ρ. It is equal to:√
1− ∥ρB∥2

√
1− ∥ρA∥2 − ∥ρ− ρA ⊗ ρB∥1 (22)

Hence if the enhanced realignment criterion detects entanglement in ρ, then it is detected by a witness of a
form W∞ as well, hence it is also detected by WO,x,y for large enough x, y.
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and look for the minimum of their expected values for a given state ρ. It is attained for values of
parameters:

• O = UV T ,where UDV T is a SVD of ρ−ρA⊗ρB

• tan θ =

√
dB(1−∥ρB∥2)
dA(1−∥ρA∥2)

• η =

√
dAdB

sin θ cos θ

∥∥∥∥ cos θ√
dA
ρ̃B + sin θ√

dB
ÕT ρ̃A

∥∥∥∥
• v = −

A cos θ√
dA

ρ̃B+A sin θ√
dB

ÕT ρ̃A∥∥∥∥A cos θ√
dA

ρ̃B+A sin θ√
dB

ÕT ρ̃A

∥∥∥∥
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criterion. Now we consider the limit witnesses:

W∞ =
(dB − 1) cot θ + (dA − 1) tan θ + η2 sin θ cos θ

2

IdA√
dA

⊗
IdB√
dB

+ η cos θ
IA√
dA

⊗
∑
β>0

vβGB
β

+ η sin θ
∑
α>0

(Õv)αGA
α ⊗

IB√
dB

+
∑

α,β>0

ÕαβGA
α ⊗GB

β (21)

and look for the minimum of their expected values for a given state ρ. It is equal to:√
1− ∥ρB∥2

√
1− ∥ρA∥2 − ∥ρ− ρA ⊗ ρB∥1 (22)

Hence if the enhanced realignment criterion detects entanglement in ρ, then it is detected by a witness of a
form W∞ as well, hence it is also detected by WO,x,y for large enough x, y.
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