Entanglement witnesses: overview of the technique and a new construction

Gniewomir Sarbicki ${ }^{1}$, Giovanni Scala ${ }^{2,3}$, Dariusz Chruściński ${ }^{1}$

[^0]Kraków, 2020.V. 4

Overview

Introduction

Realignment criterion and beyond

Our result－linear witnesses from non－linear criterion

Separable states and Schmidt decomposition

Definition: A pure state $\rho \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ is called separable if it is represented by a product state vector:

$$
\begin{equation*}
\rho=\left|\psi_{1} \otimes \cdots \otimes \psi_{n}\right\rangle\left\langle\psi_{1} \otimes \cdots \otimes \psi_{n}\right| \tag{1}
\end{equation*}
$$

Separable states and Schmidt decomposition

Definition: A pure state $\rho \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ is called separable if it is represented by a product state vector:

$$
\begin{equation*}
\rho=\left|\psi_{1} \otimes \cdots \otimes \psi_{n}\right\rangle\left\langle\psi_{1} \otimes \cdots \otimes \psi_{n}\right| \tag{1}
\end{equation*}
$$

Definition: A mixed state $\rho \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ is separable if it is a convex combination of pure separable states:

$$
\begin{equation*}
\rho=\sum_{i} p_{i}\left|\psi_{1}^{(i)} \otimes \cdots \otimes \psi_{n}^{(i)}\right\rangle\left\langle\psi_{1}^{(i)} \otimes \cdots \otimes \psi_{n}^{(i)}\right| \tag{2}
\end{equation*}
$$

Separable states and Schmidt decomposition

Definition: A pure state $\rho \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ is called separable if it is represented by a product state vector:

$$
\begin{equation*}
\rho=\left|\psi_{1} \otimes \cdots \otimes \psi_{n}\right\rangle\left\langle\psi_{1} \otimes \cdots \otimes \psi_{n}\right| \tag{1}
\end{equation*}
$$

Definition: A mixed state $\rho \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ is separable if it is a convex combination of pure separable states:

$$
\begin{equation*}
\rho=\sum_{i} p_{i}\left|\psi_{1}^{(i)} \otimes \cdots \otimes \psi_{n}^{(i)}\right\rangle\left\langle\psi_{1}^{(i)} \otimes \cdots \otimes \psi_{n}^{(i)}\right| \tag{2}
\end{equation*}
$$

A state not being separable is called entangled.

Separable states and Schmidt decomposition

Definition: A pure state $\rho \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ is called separable if it is represented by a product state vector:

$$
\begin{equation*}
\rho=\left|\psi_{1} \otimes \cdots \otimes \psi_{n}\right\rangle\left\langle\psi_{1} \otimes \cdots \otimes \psi_{n}\right| \tag{1}
\end{equation*}
$$

Definition: A mixed state $\rho \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ is separable if it is a convex combination of pure separable states:

$$
\begin{equation*}
\rho=\sum_{i} p_{i}\left|\psi_{1}^{(i)} \otimes \cdots \otimes \psi_{n}^{(i)}\right\rangle\left\langle\psi_{1}^{(i)} \otimes \cdots \otimes \psi_{n}^{(i)}\right| \tag{2}
\end{equation*}
$$

A state not being separable is called entangled.
In 2×2 and 2×3 we can easily check separability of a state. In general situation only necessary conditions are known.

Separable states and Schmidt decomposition

Definition: A pure state $\rho \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ is called separable if it is represented by a product state vector:

$$
\begin{equation*}
\rho=\left|\psi_{1} \otimes \cdots \otimes \psi_{n}\right\rangle\left\langle\psi_{1} \otimes \cdots \otimes \psi_{n}\right| \tag{1}
\end{equation*}
$$

Definition: A mixed state $\rho \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ is separable if it is a convex combination of pure separable states:

$$
\begin{equation*}
\rho=\sum_{i} p_{i}\left|\psi_{1}^{(i)} \otimes \cdots \otimes \psi_{n}^{(i)}\right\rangle\left\langle\psi_{1}^{(i)} \otimes \cdots \otimes \psi_{n}^{(i)}\right| \tag{2}
\end{equation*}
$$

A state not being separable is called entangled.

In 2×2 and 2×3 we can easily check separability of a state. In general situation only necessary conditions are known.

Schmidt decomposition: A vector $|\Psi\rangle \in \mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}$ can be decomposed as: $|\Psi\rangle=\sum_{i=1}^{\min \left(d_{1}, d_{2}\right)} \lambda_{i}\left|e_{i}\right\rangle \otimes\left|f_{i}\right\rangle$, where $\left\langle e_{i} \mid e_{j}\right\rangle=\delta_{i j},\left\langle f_{i} \mid f_{j}\right\rangle=\delta_{i j}$ and $\sum_{i} \lambda_{i}^{2}=1$.

Separable states and Schmidt decomposition

Definition: A pure state $\rho \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ is called separable if it is represented by a product state vector:

$$
\begin{equation*}
\rho=\left|\psi_{1} \otimes \cdots \otimes \psi_{n}\right\rangle\left\langle\psi_{1} \otimes \cdots \otimes \psi_{n}\right| \tag{1}
\end{equation*}
$$

Definition: A mixed state $\rho \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ is separable if it is a convex combination of pure separable states:

$$
\begin{equation*}
\rho=\sum_{i} p_{i}\left|\psi_{1}^{(i)} \otimes \cdots \otimes \psi_{n}^{(i)}\right\rangle\left\langle\psi_{1}^{(i)} \otimes \cdots \otimes \psi_{n}^{(i)}\right| \tag{2}
\end{equation*}
$$

A state not being separable is called entangled.

In 2×2 and 2×3 we can easily check separability of a state. In general situation only necessary conditions are known.

Schmidt decomposition: A vector $|\Psi\rangle \in \mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}$ can be decomposed as: $|\Psi\rangle=\sum_{i=1}^{\min \left(d_{1}, d_{2}\right)} \lambda_{i}\left|e_{i}\right\rangle \otimes\left|f_{i}\right\rangle$, where $\left\langle e_{i} \mid e_{j}\right\rangle=\delta_{i j},\left\langle f_{i} \mid f_{j}\right\rangle=\delta_{i j}$ and $\sum_{i} \lambda_{i}^{2}=1$.
(direct consequence of Singular Value Decomposition, valid only for bipartite systems).

Separable states and Schmidt decomposition

Definition: A pure state $\rho \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ is called separable if it is represented by a product state vector:

$$
\begin{equation*}
\rho=\left|\psi_{1} \otimes \cdots \otimes \psi_{n}\right\rangle\left\langle\psi_{1} \otimes \cdots \otimes \psi_{n}\right| \tag{1}
\end{equation*}
$$

Definition: A mixed state $\rho \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ is separable if it is a convex combination of pure separable states:

$$
\begin{equation*}
\rho=\sum_{i} p_{i}\left|\psi_{1}^{(i)} \otimes \cdots \otimes \psi_{n}^{(i)}\right\rangle\left\langle\psi_{1}^{(i)} \otimes \cdots \otimes \psi_{n}^{(i)}\right| \tag{2}
\end{equation*}
$$

A state not being separable is called entangled.

In 2×2 and 2×3 we can easily check separability of a state. In general situation only necessary conditions are known.

Schmidt decomposition: A vector $|\Psi\rangle \in \mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}$ can be decomposed as: $|\Psi\rangle=\sum_{i=1}^{\min \left(d_{1}, d_{2}\right)} \lambda_{i}\left|e_{i}\right\rangle \otimes\left|f_{i}\right\rangle$, where $\left\langle e_{i} \mid e_{j}\right\rangle=\delta_{i j},\left\langle f_{i} \mid f_{j}\right\rangle=\delta_{i j}$ and $\sum_{i} \lambda_{i}^{2}=1$.
(direct consequence of Singular Value Decomposition, valid only for bipartite systems).

It generalises to decomposition of a bipartite state:

$$
\begin{equation*}
\rho=\sum_{i=1}^{\min \left(d_{1}^{2}, d_{2}^{2}\right)} \lambda_{i} F_{i} \otimes G_{i}, \tag{3}
\end{equation*}
$$

where $\left\langle F_{i} \mid F_{j}\right\rangle_{H S}=\delta_{i j},\left\langle G_{i} \mid G_{j}\right\rangle_{H S}=\delta_{i j}, \sum_{i} \lambda_{i}^{2}=1$ and F_{i} 's and G_{i} 's are hermitian.
(not a separable decomposition - F_{i} and G_{i} in general not positive!)

Entanglement witnesses and positive maps

Definition: An observable $W \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ is called entanglement witness if $\operatorname{Tr}(\rho W) \geq 0$ for all separable ρ 's, but $W \nsupseteq 0$.

Entanglement witnesses and positive maps

Definition: An observable $W \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ is called entanglement witness if $\operatorname{Tr}(\rho W) \geq 0$ for all separable ρ 's, but $W \nsupseteq 0$.

If $\operatorname{Tr}(W \rho)<0$, then ρ has to be entangled. We say that W detects entanglement in ρ.

Entanglement witnesses and positive maps

Definition: An observable $W \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ is called entanglement witness if $\operatorname{Tr}(\rho W) \geq 0$ for all separable ρ 's, but $W \nsupseteq 0$.

If $\operatorname{Tr}(W \rho)<0$, then ρ has to be entangled. We say that W detects entanglement in ρ.

For any entangled state ρ there exists an entanglement witness W detecting it.

Entanglement witnesses and positive maps

Definition: An observable $W \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ is called entanglement witness if $\operatorname{Tr}(\rho W) \geq 0$ for all separable ρ 's, but $W \nsupseteq 0$.

If $\operatorname{Tr}(W \rho)<0$, then ρ has to be entangled. We say that W detects entanglement in ρ.

For any entangled state ρ there exists an entanglement witness W detecting it.

Entanglement witnesses and positive maps

Definition: An observable $W \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ is called entanglement witness if $\operatorname{Tr}(\rho W) \geq 0$ for all separable ρ 's, but $W \nsupseteq 0$.

If $\operatorname{Tr}(W \rho)<0$, then ρ has to be entangled. We say that W detects entanglement in ρ.

For any entangled state ρ there exists an entanglement witness W detecting it.

Entanglement witnesses and positive maps

Definition: An observable $W \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ is called entanglement witness if $\operatorname{Tr}(\rho W) \geq 0$ for all separable ρ 's, but $W \nsupseteq 0$.

If $\operatorname{Tr}(W \rho)<0$, then ρ has to be entangled. We say that W detects entanglement in ρ.

For any entangled state ρ there exists an entanglement witness W detecting it.

A map $\Phi: \mathcal{B}\left(\mathbb{C}^{d_{1}}\right) \rightarrow \mathcal{B}\left(\mathbb{C}^{d_{2}}\right)$ is called positive (P), if $\forall \rho \in \mathcal{B}\left(\mathbb{C}^{d_{1}}\right) \rho \geq 0 \Rightarrow \Phi(\rho) \geq 0$.

Entanglement witnesses and positive maps

Definition: An observable $W \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ is called entanglement witness if $\operatorname{Tr}(\rho W) \geq 0$ for all separable ρ 's, but $W \nsupseteq 0$.

If $\operatorname{Tr}(W \rho)<0$, then ρ has to be entangled. We say that W detects entanglement in ρ.

For any entangled state ρ there exists an entanglement witness W detecting it.

A map $\Phi: \mathcal{B}\left(\mathbb{C}^{d_{1}}\right) \rightarrow \mathcal{B}\left(\mathbb{C}^{d_{2}}\right)$ is called positive (P), if $\forall \rho \in \mathcal{B}\left(\mathbb{C}^{d_{1}}\right) \rho \geq 0 \Rightarrow \Phi(\rho) \geq 0$.

Positive map criterion: A state $\rho \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right)$ is separable iff $\forall \Phi$-positive $\left(I_{d_{1}} \otimes \Phi\right)(\rho) \geq 0$.

Entanglement witnesses and positive maps

Definition: An observable $W \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ is called entanglement witness if $\operatorname{Tr}(\rho W) \geq 0$ for all separable ρ 's, but $W \nsupseteq 0$.

If $\operatorname{Tr}(W \rho)<0$, then ρ has to be entangled. We say that W detects entanglement in ρ.

For any entangled state ρ there exists an entanglement witness W detecting it.

A map $\Phi: \mathcal{B}\left(\mathbb{C}^{d_{1}}\right) \rightarrow \mathcal{B}\left(\mathbb{C}^{d_{2}}\right)$ is called positive (P), if $\forall \rho \in \mathcal{B}\left(\mathbb{C}^{d_{1}}\right) \rho \geq 0 \Rightarrow \Phi(\rho) \geq 0$.

Positive map criterion: A state $\rho \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right)$ is separable iff $\forall \Phi$-positive $\left(I_{d_{1}} \otimes \Phi\right)(\rho) \geq 0$.

A map $\Phi: \mathcal{B}\left(\mathbb{C}^{d_{1}}\right) \rightarrow \mathcal{B}\left(\mathbb{C}^{d_{1}}\right)$ is called completely positive (CP), if $\forall d I_{d} \otimes \Phi$ is positive.

Entanglement witnesses and positive maps

Definition: An observable $W \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ is called entanglement witness if $\operatorname{Tr}(\rho W) \geq 0$ for all separable ρ 's, but $W \nsupseteq 0$.

If $\operatorname{Tr}(W \rho)<0$, then ρ has to be entangled. We say that W detects entanglement in ρ.

For any entangled state ρ there exists an entanglement witness W detecting it.

A map $\Phi: \mathcal{B}\left(\mathbb{C}^{d_{1}}\right) \rightarrow \mathcal{B}\left(\mathbb{C}^{d_{2}}\right)$ is called positive (P), if $\forall \rho \in \mathcal{B}\left(\mathbb{C}^{d_{1}}\right) \rho \geq 0 \Rightarrow \Phi(\rho) \geq 0$.

Positive map criterion: A state $\rho \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right)$ is separable iff $\forall \Phi$-positive $\left(I_{d_{1}} \otimes \Phi\right)(\rho) \geq 0$.

A map $\Phi: \mathcal{B}\left(\mathbb{C}^{d_{1}}\right) \rightarrow \mathcal{B}\left(\mathbb{C}^{d_{1}}\right)$ is called completely positive (CP), if $\forall d I_{d} \otimes \Phi$ is positive.
(completely positive and trace-preserving maps are known as quantum channels).

Entanglement witnesses and positive maps

Definition: An observable $W \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ is called entanglement witness if $\operatorname{Tr}(\rho W) \geq 0$ for all separable ρ 's, but $W \nsupseteq 0$.

If $\operatorname{Tr}(W \rho)<0$, then ρ has to be entangled. We say that W detects entanglement in ρ.

For any entangled state ρ there exists an entanglement witness W detecting it.

$\mathrm{A} \operatorname{map} \Phi: \mathcal{B}\left(\mathbb{C}^{d_{1}}\right) \rightarrow \mathcal{B}\left(\mathbb{C}^{d_{2}}\right)$ is called positive (P), if $\forall \rho \in \mathcal{B}\left(\mathbb{C}^{d_{1}}\right) \rho \geq 0 \Rightarrow \Phi(\rho) \geq 0$.

Positive map criterion: A state $\rho \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right)$ is separable iff $\forall \Phi$-positive $\left(I_{d_{1}} \otimes \Phi\right)(\rho) \geq 0$.
$\mathrm{A} \operatorname{map} \Phi: \mathcal{B}\left(\mathbb{C}^{d_{1}}\right) \rightarrow \mathcal{B}\left(\mathbb{C}^{d_{1}}\right)$ is called completely positive (CP), if $\forall d I_{d} \otimes \Phi$ is positive.
(completely positive and trace-preserving maps are known as quantum channels).

The Choi-Jamiołkowski isomorphism relates a P but not CP map Φ to entanglement witness W_{Φ}.

Entanglement witnesses and positive maps

Definition: An observable $W \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ is called entanglement witness if $\operatorname{Tr}(\rho W) \geq 0$ for all separable ρ 's, but $W \nsupseteq 0$.

If $\operatorname{Tr}(W \rho)<0$, then ρ has to be entangled. We say that W detects entanglement in ρ.

For any entangled state ρ there exists an entanglement witness W detecting it.

$\mathrm{A} \operatorname{map} \Phi: \mathcal{B}\left(\mathbb{C}^{d_{1}}\right) \rightarrow \mathcal{B}\left(\mathbb{C}^{d_{2}}\right)$ is called positive (P), if $\forall \rho \in \mathcal{B}\left(\mathbb{C}^{d_{1}}\right) \rho \geq 0 \Rightarrow \Phi(\rho) \geq 0$.

Positive map criterion: A state $\rho \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right)$ is separable iff $\forall \Phi$-positive $\left(I_{d_{1}} \otimes \Phi\right)(\rho) \geq 0$.

A map $\Phi: \mathcal{B}\left(\mathbb{C}^{d_{1}}\right) \rightarrow \mathcal{B}\left(\mathbb{C}^{d_{1}}\right)$ is called completely positive (CP), if $\forall d I_{d} \otimes \Phi$ is positive.
(completely positive and trace-preserving maps are known as quantum channels).

The Choi-Jamiołkowski isomorphism relates a P but not CP map Φ to entanglement witness W_{Φ}.

Positivity of $\left(I_{d_{1}} \otimes \Phi\right)(\rho)$ is equivalent to positive expected value of a family of entanglement witnesses: $\left\{A \otimes B W_{\Phi} A^{\dagger} \otimes B^{\dagger}\right\}$.

Entanglement Witness measuring and partial transposition criterion

One can always decompose $W \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ as
$W=\sum_{i} A_{i}^{(1)} \otimes \cdots \otimes A_{i}^{(n)}, \quad$ where $\quad A_{i} \in \mathcal{B}\left(\mathbb{C}^{d_{i}}\right)$

Entanglement Witness measuring and partial transposition criterion

One can always decompose $W \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ as

$$
\begin{equation*}
W=\sum_{i} A_{i}^{(1)} \otimes \cdots \otimes A_{i}^{(n)}, \quad \text { where } \quad A_{i} \in \mathcal{B}\left(\mathbb{C}^{d_{i}}\right) \tag{4}
\end{equation*}
$$

Entanglement Witness measuring and partial transposition criterion

One can always decompose $W \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ as

$$
\begin{equation*}
W=\sum_{i} A_{i}^{(1)} \otimes \cdots \otimes A_{i}^{(n)}, \quad \text { where } \quad A_{i} \in \mathcal{B}\left(\mathbb{C}^{d_{i}}\right) \tag{4}
\end{equation*}
$$

Bell-type experiment, one expected value instead of $\left(d_{1} d_{2}\right)^{2}-1$ like in full-state tomography.

Entanglement Witness measuring and partial transposition criterion

One can always decompose $W \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ as

$$
\begin{equation*}
W=\sum_{i} A_{i}^{(1)} \otimes \cdots \otimes A_{i}^{(n)}, \quad \text { where } \quad A_{i} \in \mathcal{B}\left(\mathbb{C}^{d_{i}}\right) \tag{4}
\end{equation*}
$$

Bell-type experiment, one expected value instead of $\left(d_{1} d_{2}\right)^{2}-1$ like in full-state tomography.

Entanglement Witness measuring and partial transposition criterion

One can always decompose $W \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ as
$W=\sum_{i} A_{i}^{(1)} \otimes \cdots \otimes A_{i}^{(n)}, \quad$ where $\quad A_{i} \in \mathcal{B}\left(\mathbb{C}^{d_{i}}\right)$
 Transposition is a P but not CP map \Rightarrow A state ρ is separable, $(I \otimes T) \rho \geq 0$.

Bell-type experiment, one expected value instead of $\left(d_{1} d_{2}\right)^{2}-1$ like in full-state tomography.

Entanglement Witness measuring and partial transposition criterion

One can always decompose $W \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ as

$$
\begin{equation*}
W=\sum_{i} A_{i}^{(1)} \otimes \cdots \otimes A_{i}^{(n)}, \quad \text { where } \quad A_{i} \in \mathcal{B}\left(\mathbb{C}^{d_{i}}\right) \tag{4}
\end{equation*}
$$

Bell-type experiment, one expected value instead of $\left(d_{1} d_{2}\right)^{2}-1$ like in full-state tomography.

A state ρ is separable, $(I \otimes T) \rho \geq 0$.
(positive partial transposition - PPT)
Transposition is a P but not CP map \Rightarrow

Entanglement Witness measuring and partial transposition criterion

One can always decompose $W \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ as

$$
\begin{equation*}
W=\sum_{i} A_{i}^{(1)} \otimes \cdots \otimes A_{i}^{(n)}, \quad \text { where } \quad A_{i} \in \mathcal{B}\left(\mathbb{C}^{d_{i}}\right) \tag{4}
\end{equation*}
$$

Transposition is a P but not CP map \Rightarrow

A state ρ is separable, $(I \otimes T) \rho \geq 0$.
(positive partial transposition - PPT)

For systems 2×2 and 2×3 also \Leftarrow.

In higher dimensions exists PPT entangled states.

Bell-type experiment, one expected value instead of $\left(d_{1} d_{2}\right)^{2}-1$ like in full-state tomography.

Entanglement Witness measuring and partial transposition criterion

One can always decompose $W \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)$ as

$$
\begin{equation*}
W=\sum_{i} A_{i}^{(1)} \otimes \cdots \otimes A_{i}^{(n)}, \quad \text { where } \quad A_{i} \in \mathcal{B}\left(\mathbb{C}^{d_{i}}\right) \tag{4}
\end{equation*}
$$

Bell-type experiment, one expected value instead of $\left(d_{1} d_{2}\right)^{2}-1$ like in full-state tomography.

A state ρ is separable, $(I \otimes T) \rho \geq 0$.
(positive partial transposition - PPT)

For systems 2×2 and 2×3 also \Leftarrow.

In higher dimensions exists PPT entangled states.

Other criteria or other maps are necessary to detect such entanglement.
Transposition is a P but not CP map \Rightarrow

Realignment criterion and its witnesses

Definition: Trace norm of a real matrix A is defined as $\|A\|_{1}=\operatorname{Tr} \sqrt{A A^{T}}$.

Realignment criterion and its witnesses

Definition: Trace norm of a real matrix A is defined as $\|A\|_{1}=\operatorname{Tr} \sqrt{A A^{T}}$.

- for positive $A:\|A\|_{1}=\operatorname{Tr} \mathrm{A}$, in general: sum of singular values,
- $\||\psi\rangle\langle\phi| \|_{1}=|\psi| \cdot|\phi|$.

Realignment criterion and its witnesses

Definition: Trace norm of a real matrix A is defined as $\|A\|_{1}=\operatorname{Tr} \sqrt{A A^{T}}$.

- for positive $A:\|A\|_{1}=\operatorname{Tr} \mathrm{A}$, in general: sum of singular values,
- $\||\psi\rangle\langle\phi| \|_{1}=|\psi| \cdot|\phi|$.

Let $\left\{G_{i}^{(k)}\right\}_{i=1}^{d_{k}^{2}}$ be an orthonormal hermitian basis of $\mathcal{B}\left(\mathbb{C}^{d_{k}}\right)$ such that $G_{0}^{(k)}=I_{d_{k}} / \sqrt{d_{k}}$.

Realignment criterion and its witnesses

Definition: Trace norm of a real matrix A is defined as $\|A\|_{1}=\operatorname{Tr} \sqrt{A A^{T}}$.

- for positive $A:\|A\|_{1}=\operatorname{Tr} \mathrm{A}$, in general: sum of singular values,
- $\||\psi\rangle\langle\phi| \|_{1}=|\psi| \cdot|\phi|$.

Let $\left\{G_{i}^{(k)}\right\}_{i=1}^{d_{k}^{2}}$ be an orthonormal hermitian basis of $\mathcal{B}\left(\mathbb{C}^{d_{k}}\right)$ such that $G_{0}^{(k)}=I_{d_{k}} / \sqrt{d_{k}}$.

Definition: We define the correlation tensor of ρ as:

$$
\begin{equation*}
C(\rho)_{i_{1}, \ldots, i_{n}}=\operatorname{Tr}\left(\rho G_{i_{1}}^{(1)} \otimes \cdots \otimes G_{i_{n}}^{(n)}\right) \tag{5}
\end{equation*}
$$

if $n=2$ it is $d_{1}^{2} \times d_{2}^{2}$ matrix of coordinates of ρ.

Realignment criterion and its witnesses

Definition: Trace norm of a real matrix A is defined as $\|A\|_{1}=\operatorname{Tr} \sqrt{A A^{T}}$.

- for positive $A:\|A\|_{1}=\operatorname{Tr} \mathrm{A}$, in general: sum of singular values,
- $\||\psi\rangle\langle\phi| \|_{1}=|\psi| \cdot|\phi|$.

Let $\left\{G_{i}^{(k)}\right\}_{i=1}^{d_{k}^{2}}$ be an orthonormal hermitian basis of $\mathcal{B}\left(\mathbb{C}^{d_{k}}\right)$ such that $G_{0}^{(k)}=I_{d_{k}} / \sqrt{d_{k}}$.
Definition: We define the correlation tensor of ρ as:

$$
\begin{equation*}
C(\rho)_{i_{1}, \ldots, i_{n}}=\operatorname{Tr}\left(\rho G_{i_{1}}^{(1)} \otimes \cdots \otimes G_{i_{n}}^{(n)}\right) \tag{5}
\end{equation*}
$$

if $n=2$ it is $d_{1}^{2} \times d_{2}^{2}$ matrix of coordinates of ρ.
Observe, that $C\left(\rho_{1} \otimes \rho_{2}\right)$ is of rank 1 $\Rightarrow\left\|C\left(\rho_{1} \otimes \rho_{2}\right)\right\|_{1}=\left\|\rho_{1}\right\|_{H S} \cdot\left\|\rho_{2}\right\|_{H S} \leq 1$.

Realignment criterion and its witnesses

Definition: Trace norm of a real matrix A is defined as $\|A\|_{1}=\operatorname{Tr} \sqrt{A A^{T}}$.

- for positive $A:\|A\|_{1}=\operatorname{Tr} \mathrm{A}$, in general: sum of singular values,
- $\||\psi\rangle\langle\phi| \|_{1}=|\psi| \cdot|\phi|$.

Let $\left\{G_{i}^{(k)}\right\}_{i=1}^{d_{k}^{2}}$ be an orthonormal hermitian basis of $\mathcal{B}\left(\mathbb{C}^{d_{k}}\right)$ such that $G_{0}^{(k)}=I_{d_{k}} / \sqrt{d_{k}}$.
Definition: We define the correlation tensor of ρ as:

$$
\begin{equation*}
C(\rho)_{i_{1}, \ldots, i_{n}}=\operatorname{Tr}\left(\rho G_{i_{1}}^{(1)} \otimes \cdots \otimes G_{i_{n}}^{(n)}\right) \tag{5}
\end{equation*}
$$

if $n=2$ it is $d_{1}^{2} \times d_{2}^{2}$ matrix of coordinates of ρ.
Observe, that $C\left(\rho_{1} \otimes \rho_{2}\right)$ is of rank 1 $\Rightarrow\left\|C\left(\rho_{1} \otimes \rho_{2}\right)\right\|_{1}=\left\|\rho_{1}\right\|_{H S} \cdot\left\|\rho_{2}\right\|_{H S} \leq 1$.
Due to triangle inequality and uniformness, the same bound is valid for any separable state, hence we have proven:

Realignment criterion: If ρ (bipartite) is separable, then $\|C(\rho)\|_{1} \leq 1$.

Realignment criterion and its witnesses

Definition: Trace norm of a real matrix A is defined as $\|A\|_{1}=\operatorname{Tr} \sqrt{A A^{T}}$.

- for positive $A:\|A\|_{1}=\operatorname{Tr} \mathrm{A}$, in general: sum of singular values,
- $\||\psi\rangle\langle\phi| \|_{1}=|\psi| \cdot|\phi|$.

Let $\left\{G_{i}^{(k)}\right\}_{i=1}^{d_{k}^{2}}$ be an orthonormal hermitian basis of $\mathcal{B}\left(\mathbb{C}^{d_{k}}\right)$ such that $G_{0}^{(k)}=I_{d_{k}} / \sqrt{d_{k}}$.
Definition: We define the correlation tensor of ρ as:

$$
\begin{equation*}
C(\rho)_{i_{1}, \ldots, i_{n}}=\operatorname{Tr}\left(\rho G_{i_{1}}^{(1)} \otimes \cdots \otimes G_{i_{n}}^{(n)}\right) \tag{5}
\end{equation*}
$$

if $n=2$ it is $d_{1}^{2} \times d_{2}^{2}$ matrix of coordinates of ρ.
Observe, that $C\left(\rho_{1} \otimes \rho_{2}\right)$ is of rank 1
$\Rightarrow\left\|C\left(\rho_{1} \otimes \rho_{2}\right)\right\|_{1}=\left\|\rho_{1}\right\|_{H S} \cdot\left\|\rho_{2}\right\|_{H S} \leq 1$.
Due to triangle inequality and uniformness, the same bound is valid for any separable state, hence we have proven:

Realignment criterion: If ρ (bipartite) is separable, then $\|C(\rho)\|_{1} \leq 1$.

Property: $\|A\|_{1}=\max _{O \in O\left(d_{1}, d_{2}\right)}\langle A \mid O\rangle_{H S}$ (consequence of SVD).

Realignment criterion and its witnesses

Definition: Trace norm of a real matrix A is defined as $\|A\|_{1}=\operatorname{Tr} \sqrt{A A^{T}}$.

- for positive $A:\|A\|_{1}=\operatorname{Tr} \mathrm{A}$, in general: sum of singular values,
- $\||\psi\rangle\langle\phi| \|_{1}=|\psi| \cdot|\phi|$.

Let $\left\{G_{i}^{(k)}\right\}_{i=1}^{d_{k}^{2}}$ be an orthonormal hermitian basis of $\mathcal{B}\left(\mathbb{C}^{d_{k}}\right)$ such that $G_{0}^{(k)}=I_{d_{k}} / \sqrt{d_{k}}$.
Definition: We define the correlation tensor of ρ as:

$$
\begin{equation*}
C(\rho)_{i_{1}, \ldots, i_{n}}=\operatorname{Tr}\left(\rho G_{i_{1}}^{(1)} \otimes \cdots \otimes G_{i_{n}}^{(n)}\right) \tag{5}
\end{equation*}
$$

if $n=2$ it is $d_{1}^{2} \times d_{2}^{2}$ matrix of coordinates of ρ.
Observe, that $C\left(\rho_{1} \otimes \rho_{2}\right)$ is of rank 1
$\Rightarrow\left\|C\left(\rho_{1} \otimes \rho_{2}\right)\right\|_{1}=\left\|\rho_{1}\right\|_{H S} \cdot\left\|\rho_{2}\right\|_{H S} \leq 1$.
Due to triangle inequality and uniformness, the same bound is valid for any separable state, hence we have proven:

Realignment criterion: If ρ (bipartite) is separable, then $\|C(\rho)\|_{1} \leq 1$.

Property: $\|A\|_{1}=\max _{O \in O\left(d_{1}, d_{2}\right)}\langle A \mid O\rangle_{H S}$ (consequence of SVD).

Hence:

$$
\begin{align*}
& \|C(\rho)\|_{1}=\max _{O \in O\left(d_{1}, d_{2}\right)} \operatorname{Tr}\left(\rho \sum_{i j} G_{i}^{(1)} \otimes G_{j}^{(2)} O^{i j}\right) \leq 1 \tag{6}\\
& \forall O \in O\left(d_{1}, d_{2}\right) \operatorname{Tr}\left(\rho\left(I-\sum_{i j} G_{i}^{(1)} \otimes G_{j}^{(2)} O^{i j}\right)\right) \geq 0
\end{align*}
$$

(6)
保

Realignment criterion and its witnesses

Definition: Trace norm of a real matrix A is defined as $\|A\|_{1}=\operatorname{Tr} \sqrt{A A^{T}}$.

- for positive $A:\|A\|_{1}=\operatorname{Tr} \mathrm{A}$, in general: sum of singular values,
- $\||\psi\rangle\langle\phi| \|_{1}=|\psi| \cdot|\phi|$.

Let $\left\{G_{i}^{(k)}\right\}_{i=1}^{d_{k}^{2}}$ be an orthonormal hermitian basis of $\mathcal{B}\left(\mathbb{C}^{d_{k}}\right)$ such that $G_{0}^{(k)}=I_{d_{k}} / \sqrt{d_{k}}$.
Definition: We define the correlation tensor of ρ as:

$$
\begin{equation*}
C(\rho)_{i_{1}, \ldots, i_{n}}=\operatorname{Tr}\left(\rho G_{i_{1}}^{(1)} \otimes \cdots \otimes G_{i_{n}}^{(n)}\right) \tag{5}
\end{equation*}
$$

if $n=2$ it is $d_{1}^{2} \times d_{2}^{2}$ matrix of coordinates of ρ.
Observe, that $C\left(\rho_{1} \otimes \rho_{2}\right)$ is of rank 1 $\Rightarrow\left\|C\left(\rho_{1} \otimes \rho_{2}\right)\right\|_{1}=\left\|\rho_{1}\right\|_{H S} \cdot\left\|\rho_{2}\right\|_{H S} \leq 1$.
Due to triangle inequality and uniformness, the same bound is valid for any separable state, hence we have proven:

Realignment criterion: If ρ (bipartite) is separable, then $\|C(\rho)\|_{1} \leq 1$.

Property: $\|A\|_{1}=\max _{O \in O\left(d_{1}, d_{2}\right)}\langle A \mid O\rangle_{H S}$ (consequence of SVD).

Hence:

$$
\begin{gather*}
\|C(\rho)\|_{1}=\max _{O \in O\left(d_{1}, d_{2}\right)} \operatorname{Tr}\left(\rho \sum_{i j} G_{i}^{(1)} \otimes G_{j}^{(2)} O^{i j}\right) \leq 1 \tag{6}\\
\forall O \in O\left(d_{1}, d_{2}\right) \operatorname{Tr}\left(\rho\left(I-\sum_{i j} G_{i}^{(1)} \otimes G_{j}^{(2)} O^{i j}\right)\right) \geq 0 \tag{7}
\end{gather*}
$$

and the realignment criterion is equivalent to family of witnesses:

$$
\begin{equation*}
W_{O}=I-\sum_{i j} G_{i}^{(1)} \otimes G_{j}^{(2)} O^{i j} \tag{8}
\end{equation*}
$$

parametrised by isometry matrices.

These witnesses can be strengthen by a non-linear correction:

$$
\begin{equation*}
\widetilde{W}_{O}=I-\sum_{i j} G_{i}^{(1)} \otimes G_{j}^{(2)} O^{i j}-\frac{1}{2}\left(\operatorname{Tr} \rho_{A}^{2}+\operatorname{Tr} \rho_{B}^{2}\right) \tag{9}
\end{equation*}
$$

These witnesses can be strengthen by a non-linear correction:

$$
\begin{equation*}
\widetilde{W}_{O}=I-\sum_{i j} G_{i}^{(1)} \otimes G_{j}^{(2)} O^{i j}-\frac{1}{2}\left(\operatorname{Tr} \rho_{A}^{2}+\operatorname{Tr} \rho_{B}^{2}\right) \tag{9}
\end{equation*}
$$

Such family gives rise to the following:
Enhanced realignment criterion: If ρ (bipartite) is separable, then

$$
\begin{equation*}
\left\|C\left(\rho-\rho_{A} \otimes \rho_{B}\right)\right\|_{1} \leq \sqrt{1-\operatorname{Tr} \rho_{A}^{2}} \sqrt{1-\operatorname{Tr} \rho_{B}^{2}} \tag{10}
\end{equation*}
$$

These witnesses can be strengthen by a non-linear correction:

$$
\begin{equation*}
\widetilde{W}_{O}=I-\sum_{i j} G_{i}^{(1)} \otimes G_{j}^{(2)} O^{i j}-\frac{1}{2}\left(\operatorname{Tr} \rho_{A}^{2}+\operatorname{Tr} \rho_{B}^{2}\right) \tag{9}
\end{equation*}
$$

Such family gives rise to the following:
Enhanced realignment criterion: If ρ (bipartite) is separable, then

$$
\begin{equation*}
\left\|C\left(\rho-\rho_{A} \otimes \rho_{B}\right)\right\|_{1} \leq \sqrt{1-\operatorname{Tr} \rho_{A}^{2}} \sqrt{1-\operatorname{Tr} \rho_{B}^{2}} \tag{10}
\end{equation*}
$$

Enhanced realignment criterion turns out to be the strongest effectively computable simplification of Correlation Matrix Criterion.

Enhanced realignment criterion and other C-based criteria

Other correlation tensor based criteria:

These witnesses can be strengthen by a non-linear correction:

$$
\begin{equation*}
\widetilde{W}_{O}=I-\sum_{i j} G_{i}^{(1)} \otimes G_{j}^{(2)} O^{i j}-\frac{1}{2}\left(\operatorname{Tr} \rho_{A}^{2}+\operatorname{Tr} \rho_{B}^{2}\right) \tag{9}
\end{equation*}
$$

Such family gives rise to the following:
Enhanced realignment criterion: If ρ (bipartite) is separable, then

$$
\begin{equation*}
\left\|C\left(\rho-\rho_{A} \otimes \rho_{B}\right)\right\|_{1} \leq \sqrt{1-\operatorname{Tr} \rho_{A}^{2}} \sqrt{1-\operatorname{Tr} \rho_{B}^{2}} \tag{10}
\end{equation*}
$$

Enhanced realignment criterion turns out to be the strongest effectively computable simplification of Correlation Matrix Criterion.

These witnesses can be strengthen by a non-linear correction:

$$
\begin{equation*}
\widetilde{W}_{O}=I-\sum_{i j} G_{i}^{(1)} \otimes G_{j}^{(2)} O^{i j}-\frac{1}{2}\left(\operatorname{Tr} \rho_{A}^{2}+\operatorname{Tr} \rho_{B}^{2}\right) \tag{9}
\end{equation*}
$$

Such family gives rise to the following:
Enhanced realignment criterion: If ρ (bipartite) is separable, then

$$
\begin{equation*}
\left\|C\left(\rho-\rho_{A} \otimes \rho_{B}\right)\right\|_{1} \leq \sqrt{1-\operatorname{Tr} \rho_{A}^{2}} \sqrt{1-\operatorname{Tr} \rho_{B}^{2}} \tag{10}
\end{equation*}
$$

Enhanced realignment criterion turns out to be the strongest effectively computable simplification of Correlation Matrix Criterion.

Other correlation tensor based criteria:

- de Vicente criterion: Let \widetilde{C} be C with first row and first column removed (restrict to traceless subspaces). Then

$$
\begin{equation*}
\|\widetilde{C}(\rho)\|_{1} \leq \sqrt{1-\frac{1}{d_{A}}} \sqrt{1-\frac{1}{d_{B}}} \tag{11}
\end{equation*}
$$

These witnesses can be strengthen by a non-linear correction:

$$
\begin{equation*}
\widetilde{W}_{O}=I-\sum_{i j} G_{i}^{(1)} \otimes G_{j}^{(2)} O^{i j}-\frac{1}{2}\left(\operatorname{Tr} \rho_{A}^{2}+\operatorname{Tr} \rho_{B}^{2}\right) \tag{9}
\end{equation*}
$$

Such family gives rise to the following:
Enhanced realignment criterion: If ρ (bipartite) is separable, then

$$
\begin{equation*}
\left\|C\left(\rho-\rho_{A} \otimes \rho_{B}\right)\right\|_{1} \leq \sqrt{1-\operatorname{Tr} \rho_{A}^{2}} \sqrt{1-\operatorname{Tr} \rho_{B}^{2}} \tag{10}
\end{equation*}
$$

Enhanced realignment criterion turns out to be the strongest effectively computable simplification of Correlation Matrix Criterion.

Other correlation tensor based criteria:

- de Vicente criterion: Let \widetilde{C} be C with first row and first column removed (restrict to traceless subspaces). Then

$$
\begin{equation*}
\|\widetilde{C}(\rho)\|_{1} \leq \sqrt{1-\frac{1}{d_{A}}} \sqrt{1-\frac{1}{d_{B}}} \tag{11}
\end{equation*}
$$

- ESIC criterion: Let $\hat{C}_{i j}=\operatorname{Tr}\left(\rho P_{i} \otimes Q_{j}\right)$, where $\left\{P_{i}\right\}_{i=1}^{d_{1}^{2}}$ and $\left\{Q_{i}\right\}_{i=1}^{d_{2}^{2}}$ are SIC-POVMs. Then for ρ-separable:

$$
\begin{equation*}
\|\hat{C}\|_{1} \leq \sqrt{\frac{d_{1}+1}{2 d_{1}}} \sqrt{\frac{d_{2}+1}{2 d_{2}}} \tag{12}
\end{equation*}
$$

Generalisation of the linear criteria

Redefine: $C_{x, y}=\operatorname{diag}\{x, 1, \ldots, 1\} C \operatorname{diag}\{y, 1, \ldots, 1\}$. Then for ρ (bipartite) separable:

$$
\begin{equation*}
\forall x, y \quad\left\|C_{x, y}\right\|_{1} \leq \sqrt{\frac{d_{A}-1+x^{2}}{d_{A}}} \sqrt{\frac{d_{B}-1+y^{2}}{d_{B}}} \tag{13}
\end{equation*}
$$

Redefine: $C_{x, y}=\operatorname{diag}\{x, 1, \ldots, 1\} C \operatorname{diag}\{y, 1, \ldots, 1\}$.
Then for ρ (bipartite) separable:

$$
\begin{equation*}
\forall x, y \quad\left\|C_{x, y}\right\|_{1} \leq \sqrt{\frac{d_{A}-1+x^{2}}{d_{A}}} \sqrt{\frac{d_{B}-1+y^{2}}{d_{B}}} \tag{13}
\end{equation*}
$$

As special cases we have:

- $x=y=0$ de Vincente
- $x=y=1$ realignment
- $x=y=2 \mathrm{ESIC}$

Generalisation of the linear criteria

arXiv:2001.08258

Redefine: $C_{x, y}=\operatorname{diag}\{x, 1, \ldots, 1\} C \operatorname{diag}\{y, 1, \ldots, 1\}$.
Then for ρ (bipartite) separable:

$$
\begin{equation*}
\forall x, y \quad\left\|C_{x, y}\right\|_{1} \leq \sqrt{\frac{d_{A}-1+x^{2}}{d_{A}}} \sqrt{\frac{d_{B}-1+y^{2}}{d_{B}}} \tag{13}
\end{equation*}
$$

As special cases we have:

- $x=y=0$ de Vincente
- $x=y=1$ realignment
- $x=y=2$ ESIC

For appropriately chosen $\rho \in \mathcal{B}\left(\mathbb{C}^{3} \otimes \mathbb{C}^{3}\right)$:

Generalisation of the linear criteria

arXiv:2001.08258

Redefine: $C_{x, y}=\operatorname{diag}\{x, 1, \ldots, 1\} C \operatorname{diag}\{y, 1, \ldots, 1\}$. Then for ρ (bipartite) separable:

$$
\begin{equation*}
\forall x, y \quad\left\|C_{x, y}\right\|_{1} \leq \sqrt{\frac{d_{A}-1+x^{2}}{d_{A}}} \sqrt{\frac{d_{B}-1+y^{2}}{d_{B}}} \tag{13}
\end{equation*}
$$

As special cases we have:

- $x=y=0$ de Vincente
- $x=y=1$ realignment
- $x=y=2 \mathrm{ESIC}$

For appropriately chosen $\rho \in \mathcal{B}\left(\mathbb{C}^{3} \otimes \mathbb{C}^{3}\right)$:

Generalising to multipartite case, one has problem defining trace norm.

There is no SVD and singular values for multidimensional matrices.

Generalisation of the linear criteria

arXiv:2001.08258

Redefine: $C_{x, y}=\operatorname{diag}\{x, 1, \ldots, 1\} C \operatorname{diag}\{y, 1, \ldots, 1\}$. Then for ρ (bipartite) separable:

$$
\begin{equation*}
\forall x, y \quad\left\|C_{x, y}\right\|_{1} \leq \sqrt{\frac{d_{A}-1+x^{2}}{d_{A}}} \sqrt{\frac{d_{B}-1+y^{2}}{d_{B}}} \tag{13}
\end{equation*}
$$

As special cases we have:

- $x=y=0$ de Vincente
- $x=y=1$ realignment
- $x=y=2$ ESIC

For appropriately chosen $\rho \in \mathcal{B}\left(\mathbb{C}^{3} \otimes \mathbb{C}^{3}\right)$:

Generalising to multipartite case, one has problem defining trace norm.

There is no SVD and singular values for multidimensional matrices.
$\|A\|_{1}=\max _{O \in O\left(d_{1}, \ldots, d_{n}\right)}\langle A \mid O\rangle_{H S}$ - but what is multidimensional isometry?

Our result - linear witnesses from non-linear criterion

arXiv:2001.08258

Redefine: $C_{x, y}=\operatorname{diag}\{x, 1, \ldots, 1\} C \operatorname{diag}\{y, 1, \ldots, 1\}$. Then for ρ (bipartite) separable:

$$
\begin{equation*}
\forall x, y \quad\left\|C_{x, y}\right\|_{1} \leq \sqrt{\frac{d_{A}-1+x^{2}}{d_{A}}} \sqrt{\frac{d_{B}-1+y^{2}}{d_{B}}} \tag{13}
\end{equation*}
$$

As special cases we have:

- $x=y=0$ de Vincente
- $x=y=1$ realignment
- $x=y=2$ ESIC

For appropriately chosen $\rho \in \mathcal{B}\left(\mathbb{C}^{3} \otimes \mathbb{C}^{3}\right)$:

Generalising to multipartite case, one has problem defining trace norm.

There is no SVD and singular values for multidimensional matrices.
$\|A\|_{1}=\max _{O \in O\left(d_{1}, \ldots, d_{n}\right)}\langle A \mid O\rangle_{H S}$ - but what is multidimensional isometry?

$$
\begin{equation*}
\|A\|_{1}=\max _{M \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)} \frac{\langle A \mid M\rangle_{H S}}{\|M\|_{\text {sup }}} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\|M\|_{\text {sup }}=\sup _{\substack{x_{1}, \ldots, x_{n}: \\\left\|x_{1}\right\|=\cdots=\left\|x_{n}\right\|=1}}\left\langle x_{1} \otimes \cdots \otimes x_{n} \mid M\right\rangle \tag{15}
\end{equation*}
$$

Our result - linear witnesses from non-linear criterion - 0000

Generalisation of the linear criteria

arXiv:2001.08258

Redefine: $C_{x, y}=\operatorname{diag}\{x, 1, \ldots, 1\} C \operatorname{diag}\{y, 1, \ldots, 1\}$. Then for ρ (bipartite) separable:

$$
\begin{equation*}
\forall x, y \quad\left\|C_{x, y}\right\|_{1} \leq \sqrt{\frac{d_{A}-1+x^{2}}{d_{A}}} \sqrt{\frac{d_{B}-1+y^{2}}{d_{B}}} \tag{13}
\end{equation*}
$$

As special cases we have:

- $x=y=0$ de Vincente
- $x=y=1$ realignment
- $x=y=2 \mathrm{ESIC}$

For appropriately chosen $\rho \in \mathcal{B}\left(\mathbb{C}^{3} \otimes \mathbb{C}^{3}\right)$:

Generalising to multipartite case, one has problem defining trace norm.

There is no SVD and singular values for multidimensional matrices.
$\|A\|_{1}=\max _{O \in O\left(d_{1}, \ldots, d_{n}\right)}\langle A \mid O\rangle_{H S}$ - but what is multidimensional isometry?

$$
\begin{equation*}
\|A\|_{1}=\max _{M \in \mathcal{B}\left(\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}\right)} \frac{\langle A \mid M\rangle_{H S}}{\|M\|_{\text {sup }}} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\|M\|_{\text {sup }}=\sup _{\substack{x_{1}, \ldots, x_{n}: \\\left\|x_{1}\right\|=\cdots=\left\|x_{n}\right\|=1}}\left\langle x_{1} \otimes \cdots \otimes x_{n} \mid M\right\rangle \tag{15}
\end{equation*}
$$

We have proven the following: for ρ-separable:

$$
\begin{equation*}
\forall x_{1}, \ldots, x_{n} \quad\left\|C_{x_{1}, \ldots, x_{n}}\right\|_{1} \leq \prod_{i} \sqrt{\frac{d_{i}-1+x_{i}^{2}}{d_{i}}} \tag{16}
\end{equation*}
$$

We find a family of witnesses corresponding to our criterion:

$$
\begin{equation*}
W_{O, x, y}=a_{x y} G_{0}^{A} \otimes G_{0}^{B}+x G_{0}^{A} \otimes\left(\sum_{\beta>0} O^{0 \beta} G_{\beta}^{B}\right)+y\left(\sum_{\beta>0} O^{\alpha 0} G_{\alpha}^{A}\right) \otimes G_{0}^{B}+\sum_{\alpha, \beta>0} O^{\alpha \beta} G_{\alpha}^{A} \otimes G_{\beta}^{B} \tag{17}
\end{equation*}
$$

where $a_{x y}=\left(\sqrt{d_{A}-1+x^{2}} \sqrt{d_{B}-1+y^{2}}+x y O^{00}\right) . \lim _{x, y \rightarrow \infty} O^{00}=-1$, otherwise $\lim ^{W_{O, x, y}} \sim I \otimes I$. We take:

$$
O=\left[\begin{array}{c|c}
-\sqrt{1-\eta^{2} / r^{2}} & \eta / r \mathbf{v}^{T} \tag{18}\\
\hline \eta / r \mathbf{u} & \mathbf{O}
\end{array}\right]
$$

(up to $O\left(r^{2}\right)$), where \mathbf{u} and \mathbf{v} are unit vectors satisfying $\mathbf{u}=\mathbf{O v} / \sqrt{1-\eta^{2} / r^{2}} \xrightarrow{r \rightarrow \infty} \mathbf{O} \mathbf{v}$ and get the limit:

$$
\begin{align*}
W^{\infty} & =\frac{\left(d_{B}-1\right) \cot \theta+\left(d_{A}-1\right) \tan \theta+\eta^{2} \sin \theta \cos \theta}{2} \frac{I_{d_{A}}}{\sqrt{d_{A}}} \otimes \frac{I_{d_{B}}}{\sqrt{d_{B}}}+\eta \cos \theta \frac{I_{A}}{\sqrt{d_{A}}} \otimes \sum_{\beta>0} v^{\beta} G_{\beta}^{B} \\
& +\eta \sin \theta \sum_{\alpha>0}(\widetilde{O} v)^{\alpha} G_{\alpha}^{A} \otimes \frac{I_{B}}{\sqrt{d_{B}}}+\sum_{\alpha, \beta>0} \widetilde{O}^{\alpha \beta} G_{\alpha}^{A} \otimes G_{\beta}^{B} \tag{19}
\end{align*}
$$

Equivalence of criteria

First we prove, that (the simple part):

$$
\begin{equation*}
\left\|C\left(\rho-\rho_{A} \otimes \rho_{B}\right)\right\|_{1} \leq \sqrt{1-\operatorname{Tr} \rho_{A}^{2}} \sqrt{1-\operatorname{Tr} \rho_{B}^{2}} \Rightarrow\left\|C_{x y}(\rho)\right\|_{1} \leq \sqrt{\frac{d_{A}-1+x^{2}}{d_{A}}} \sqrt{\frac{d_{B}-1+y^{2}}{d_{B}}} \tag{20}
\end{equation*}
$$

for all x, y. Hence no correlation tensor based criterion can detect more that the enhanced realignment criterion.

Equivalence of criteria

First we prove, that (the simple part):

$$
\begin{equation*}
\left\|C\left(\rho-\rho_{A} \otimes \rho_{B}\right)\right\|_{1} \leq \sqrt{1-\operatorname{Tr} \rho_{A}^{2}} \sqrt{1-\operatorname{Tr} \rho_{B}^{2}} \Rightarrow\left\|C_{x y}(\rho)\right\|_{1} \leq \sqrt{\frac{d_{A}-1+x^{2}}{d_{A}}} \sqrt{\frac{d_{B}-1+y^{2}}{d_{B}}} \tag{20}
\end{equation*}
$$

for all x, y. Hence no correlation tensor based criterion can detect more that the enhanced realignment criterion. Now we consider the limit witnesses:

$$
\begin{align*}
W^{\infty} & =\frac{\left(d_{B}-1\right) \cot \theta+\left(d_{A}-1\right) \tan \theta+\eta^{2} \sin \theta \cos \theta}{2} \frac{I_{d_{A}}}{\sqrt{d_{A}}} \otimes \frac{I_{d_{B}}}{\sqrt{d_{B}}}+\eta \cos \theta \frac{I_{A}}{\sqrt{d_{A}}} \otimes \sum_{\beta>0} v^{\beta} G_{\beta}^{B} \\
& +\eta \sin \theta \sum_{\alpha>0}(\widetilde{O} v)^{\alpha} G_{\alpha}^{A} \otimes \frac{I_{B}}{\sqrt{d_{B}}}+\sum_{\alpha, \beta>0} \widetilde{O}^{\alpha \beta} G_{\alpha}^{A} \otimes G_{\beta}^{B} \tag{21}
\end{align*}
$$

and look for the minimum of their expected values for a given state ρ.

Equivalence of criteria

First we prove, that (the simple part):

$$
\begin{equation*}
\left\|C\left(\rho-\rho_{A} \otimes \rho_{B}\right)\right\|_{1} \leq \sqrt{1-\operatorname{Tr} \rho_{A}^{2}} \sqrt{1-\operatorname{Tr} \rho_{B}^{2}} \Rightarrow\left\|C_{x y}(\rho)\right\|_{1} \leq \sqrt{\frac{d_{A}-1+x^{2}}{d_{A}}} \sqrt{\frac{d_{B}-1+y^{2}}{d_{B}}} \tag{20}
\end{equation*}
$$

for all x, y. Hence no correlation tensor based criterion can detect more that the enhanced realignment criterion. Now we consider the limit witnesses:

$$
\begin{align*}
W^{\infty} & =\frac{\left(d_{B}-1\right) \cot \theta+\left(d_{A}-1\right) \tan \theta+\eta^{2} \sin \theta \cos \theta}{2} \frac{I_{d_{A}}}{\sqrt{d_{A}}} \otimes \frac{I_{d_{B}}}{\sqrt{d_{B}}}+\eta \cos \theta \frac{I_{A}}{\sqrt{d_{A}}} \otimes \sum_{\beta>0} v^{\beta} G_{\beta}^{B} \\
& +\eta \sin \theta \sum_{\alpha>0}(\widetilde{O} v)^{\alpha} G_{\alpha}^{A} \otimes \frac{I_{B}}{\sqrt{d_{B}}}+\sum_{\alpha, \beta>0} \widetilde{O}^{\alpha \beta} G_{\alpha}^{A} \otimes G_{\beta}^{B} \tag{21}
\end{align*}
$$

and look for the minimum of their expected values for a given state ρ. It is attained for values of parameters:

- $\mathbf{O}=U V^{T}$, where $U D V^{T}$ is a SVD of $\rho-\rho_{A} \otimes \rho_{B}$
- $\eta=\frac{\sqrt{d_{A} d_{B}}}{\sin \theta \cos \theta}\left\|\frac{\cos \theta}{\sqrt{d_{A}}} \widetilde{\rho}_{B}+\frac{\sin \theta}{\sqrt{d_{B}}} \widetilde{O}^{T} \widetilde{\rho}_{A}\right\|$
- $\tan \theta=\sqrt{\frac{d_{B}\left(1-\left\|\rho_{B}\right\|^{2}\right)}{d_{A}\left(1-\left\|\rho_{A}\right\|^{2}\right)}}$
$-v=-\frac{\frac{A \cos \theta}{\sqrt{d} \theta} \widetilde{\rho}_{B}+\frac{A \sin \theta}{\sqrt{d} \theta} \widetilde{O}^{T} \widetilde{\rho}_{A}}{\left\|\frac{A \cos \theta}{\sqrt{d_{A}}} \widetilde{\rho}_{B}+\frac{A \sin \theta}{\sqrt{d_{B}}} \widetilde{O}^{T} \widetilde{\rho}_{\rho_{A} A}\right\|}$

Equivalence of criteria

First we prove, that (the simple part):

$$
\begin{equation*}
\left\|C\left(\rho-\rho_{A} \otimes \rho_{B}\right)\right\|_{1} \leq \sqrt{1-\operatorname{Tr} \rho_{A}^{2}} \sqrt{1-\operatorname{Tr} \rho_{B}^{2}} \Rightarrow\left\|C_{x y}(\rho)\right\|_{1} \leq \sqrt{\frac{d_{A}-1+x^{2}}{d_{A}}} \sqrt{\frac{d_{B}-1+y^{2}}{d_{B}}} \tag{20}
\end{equation*}
$$

for all x, y. Hence no correlation tensor based criterion can detect more that the enhanced realignment criterion. Now we consider the limit witnesses:

$$
\begin{align*}
W^{\infty} & =\frac{\left(d_{B}-1\right) \cot \theta+\left(d_{A}-1\right) \tan \theta+\eta^{2} \sin \theta \cos \theta}{2} \frac{I_{d_{A}}}{\sqrt{d_{A}}} \otimes \frac{I_{d_{B}}}{\sqrt{d_{B}}}+\eta \cos \theta \frac{I_{A}}{\sqrt{d_{A}}} \otimes \sum_{\beta>0} v^{\beta} G_{\beta}^{B} \\
& +\eta \sin \theta \sum_{\alpha>0}(\widetilde{O} v)^{\alpha} G_{\alpha}^{A} \otimes \frac{I_{B}}{\sqrt{d_{B}}}+\sum_{\alpha, \beta>0} \widetilde{O}^{\alpha \beta} G_{\alpha}^{A} \otimes G_{\beta}^{B} \tag{21}
\end{align*}
$$

and look for the minimum of their expected values for a given state ρ. It is equal to:

$$
\begin{equation*}
\sqrt{1-\left\|\rho_{B}\right\|^{2}} \sqrt{1-\left\|\rho_{A}\right\|^{2}}-\left\|\rho-\rho_{A} \otimes \rho_{B}\right\|_{1} \tag{22}
\end{equation*}
$$

Equivalence of criteria

First we prove, that (the simple part):

$$
\begin{equation*}
\left\|C\left(\rho-\rho_{A} \otimes \rho_{B}\right)\right\|_{1} \leq \sqrt{1-\operatorname{Tr} \rho_{A}^{2}} \sqrt{1-\operatorname{Tr} \rho_{B}^{2}} \Rightarrow\left\|C_{x y}(\rho)\right\|_{1} \leq \sqrt{\frac{d_{A}-1+x^{2}}{d_{A}}} \sqrt{\frac{d_{B}-1+y^{2}}{d_{B}}} \tag{20}
\end{equation*}
$$

for all x, y. Hence no correlation tensor based criterion can detect more that the enhanced realignment criterion. Now we consider the limit witnesses:

$$
\begin{align*}
W^{\infty} & =\frac{\left(d_{B}-1\right) \cot \theta+\left(d_{A}-1\right) \tan \theta+\eta^{2} \sin \theta \cos \theta}{2} \frac{I_{d_{A}}}{\sqrt{d_{A}}} \otimes \frac{I_{d_{B}}}{\sqrt{d_{B}}}+\eta \cos \theta \frac{I_{A}}{\sqrt{d_{A}}} \otimes \sum_{\beta>0} v^{\beta} G_{\beta}^{B} \\
& +\eta \sin \theta \sum_{\alpha>0}(\widetilde{O} v)^{\alpha} G_{\alpha}^{A} \otimes \frac{I_{B}}{\sqrt{d_{B}}}+\sum_{\alpha, \beta>0} \widetilde{O}^{\alpha \beta} G_{\alpha}^{A} \otimes G_{\beta}^{B} \tag{21}
\end{align*}
$$

and look for the minimum of their expected values for a given state ρ. It is equal to:

$$
\begin{equation*}
\sqrt{1-\left\|\rho_{B}\right\|^{2}} \sqrt{1-\left\|\rho_{A}\right\|^{2}}-\left\|\rho-\rho_{A} \otimes \rho_{B}\right\|_{1} \tag{22}
\end{equation*}
$$

Hence if the enhanced realignment criterion detects entanglement in ρ, then it is detected by a witness of a form W^{∞} as well, hence it is also detected by $W_{O, x, y}$ for large enough x, y.

Our result - linear witnesses from non-linear criterion

Summary

- To detect PPT entanglement, one uses realignment criterion,

Our result - linear witnesses from non-linear criterion

Summary

- To detect PPT entanglement, one uses realignment criterion,
- or one of others correlation tensor based criteria.
Our result - linear witnesses from non-linear criterion

Summary

- To detect PPT entanglement, one uses realignment criterion,
- or one of others correlation tensor based criteria.
- Realignment criterion is equivalent to a family of entanglement witnesses,
Our result - linear witnesses from non-linear criterion

Summary

- To detect PPT entanglement, one uses realignment criterion,
- or one of others correlation tensor based criteria.
- Realignment criterion is equivalent to a family of entanglement witnesses,
- which have a non-linear improvement.

Summary

- To detect PPT entanglement, one uses realignment criterion,
- or one of others correlation tensor based criteria.
- Realignment criterion is equivalent to a family of entanglement witnesses,
- which have a non-linear improvement.
- The family of improved witnesses is in turn equivalent to the enhanced realignment criterion,

Summary

- To detect PPT entanglement, one uses realignment criterion,
- or one of others correlation tensor based criteria.
- Realignment criterion is equivalent to a family of entanglement witnesses,
- which have a non-linear improvement.
- The family of improved witnesses is in turn equivalent to the enhanced realignment criterion,
- which is the strongest effectively computable implication of the CMC criterion.

Summary

- To detect PPT entanglement, one uses realignment criterion,
- or one of others correlation tensor based criteria.
- Realignment criterion is equivalent to a family of entanglement witnesses,
- which have a non-linear improvement.
- The family of improved witnesses is in turn equivalent to the enhanced realignment criterion,
- which is the strongest effectively computable implication of the CMC criterion.
- A number of correlation tensor based criteria generalises to \mathbb{R}^{2} - parametrised criterion,

Summary

－To detect PPT entanglement，one uses realignment criterion，
－or one of others correlation tensor based criteria．
－Realignment criterion is equivalent to a family of entanglement witnesses，
－which have a non－linear improvement．
－The family of improved witnesses is in turn equivalent to the enhanced realignment criterion，
－which is the strongest effectively computable implication of the CMC criterion．
－A number of correlation tensor based criteria generalises to \mathbb{R}^{2}－parametrised criterion，
－which has a multipartite generalisation

Our result - linear witnesses from non-linear criterion

Summary

- To detect PPT entanglement, one uses realignment criterion,
- or one of others correlation tensor based criteria.
- Realignment criterion is equivalent to a family of entanglement witnesses,
- which have a non-linear improvement.
- The family of improved witnesses is in turn equivalent to the enhanced realignment criterion,
- which is the strongest effectively computable implication of the CMC criterion.
- A number of correlation tensor based criteria generalises to \mathbb{R}^{2} - parametrised criterion,
- which has a multipartite generalisation
- and in bipartite case is equivalent to the enhanced realignment criterion,

Our result－linear witnesses from non－linear criterion

Summary

－To detect PPT entanglement，one uses realignment criterion，
－or one of others correlation tensor based criteria．
－Realignment criterion is equivalent to a family of entanglement witnesses，
－which have a non－linear improvement．
－The family of improved witnesses is in turn equivalent to the enhanced realignment criterion，
－which is the strongest effectively computable implication of the CMC criterion．
－A number of correlation tensor based criteria generalises to \mathbb{R}^{2}－parametrised criterion，
－which has a multipartite generalisation
－and in bipartite case is equivalent to the enhanced realignment criterion，
－hence we have a powerful family W^{∞} of linear entanglement witnesses（and hence positive maps）．

Our result - linear witnesses from non-linear criterion

Summary

- To detect PPT entanglement, one uses realignment criterion,
- or one of others correlation tensor based criteria.
- Realignment criterion is equivalent to a family of entanglement witnesses,
- which have a non-linear improvement.
- The family of improved witnesses is in turn equivalent to the enhanced realignment criterion,
- which is the strongest effectively computable implication of the CMC criterion.
- A number of correlation tensor based criteria generalises to \mathbb{R}^{2} - parametrised criterion,
- which has a multipartite generalisation
- and in bipartite case is equivalent to the enhanced realignment criterion,
- hence we have a powerful family W^{∞} of linear entanglement witnesses (and hence positive maps).
- Work on multipartite version of the limiting formula is in progress.

Our result - linear witnesses from non-linear criterion

Summary

- To detect PPT entanglement, one uses realignment criterion,
- or one of others correlation tensor based criteria.
- Realignment criterion is equivalent to a family of entanglement witnesses,
- which have a non-linear improvement.
- The family of improved witnesses is in turn equivalent to the enhanced realignment criterion,
- which is the strongest effectively computable implication of the CMC criterion.
- A number of correlation tensor based criteria generalises to \mathbb{R}^{2} - parametrised criterion,
- which has a multipartite generalisation
- and in bipartite case is equivalent to the enhanced realignment criterion,
- hence we have a powerful family W^{∞} of linear entanglement witnesses (and hence positive maps).
- Work on multipartite version of the limiting formula is in progress.

Thank you for your attention!

Papers

- K. Chen and L.-A. Wu, Quantum Inf. Comput. 3, 193 (2003)
- O. Rudolph, Quantum Inf. Proccess. 4, 219 (2005)
- K. Chen and L.-A. Wu, Phys. Rev. A 69, 022312 (2004)
- O. Gühne et al., Phys. Rev. A 74, 010301(R) (2006)
- C.-J. Zhang et al., Phys. Rev. A 76, 012334 (2007)
- C.-J. Zhang, Y.-S. Zhang, S. Zhang, and G.-C. Guo, Phys. Rev. A 77, 060301(R) (2008)
- O. Gühne, P. Hyllus, O. Gittsovich, and J. Eisert, Phys. Rev. Lett. 99, 130504 (2007)
- O. Gittsovich and O. Gühne, Phys. Rev. A 81, 032333 (2010)
- M. Li, S.-M. Fei, and Z.-X. Wang, J. Phys. A: Math. Theor. 41, 202002 (2008)
- P. Badzia̧g, C. Brukner, W. Laskowski, T. Paterek, and M. Żukowski, Phys. Rev. Lett. 100, 140403 (2008)
- W. Laskowski, M. Markiewicz, T. Paterek, and M.Żukowski, Phys. Rev. A 84, 062305 (2011)
- J. D. Vicente, Quant. Inf. Comput. 7, 624 (2007)
- J. Shang, A. Asadian, H. Zhu, and O. Gühne, Phys. Rev. A 98, 022309 (2018)
- G. Sarbicki, G. Scala, and D. Chruściński, Phys. Rev. A 101, 012341 (2020)
- G. Sarbicki, G. Scala, and D. Chruściński, arXiv:2002.00646

[^0]: ${ }^{1}$ Institute of Physics, Nicolaus Copernicus University, Grudziądzka 5/7, 87-100 Toruń, Poland
 ${ }^{2}$ Dipartimento Interateneo di Fisica, Università degli Studi di Bari, I-70126 Bari, Italy
 ${ }^{3}$ INFN, Sezione di Bari, I- 70125 Bari, Italy

