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A state not being separable is called entangled.

In 2 x 2 and 2 X 3 we can easily check separability of
a state. In general situation only necessary
conditions are known.

Schmidt decomposition: A vector |¥) € C% @ C%2
can be decomposed as: |¥) = Z;ﬂm(dl’dﬁ i |e ) ®|fi),
where (e;le;) = 8i5, (filf;) = 8i; and >, A2

(direct consequence of Singular Value Decomposition,
valid only for bipartite systems).

It generalises to decomposition of a bipartite state:

min(d7,d3)

=y

=1

AiF; ® Gy, (3)

where (F;|Fj) g = ij, (GilGj) gg = 0ij, > )\? =1
and Fj’s and G;’s are hermitian.

(not a separable decomposition - F; and G; in general
not positive!)
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Definition: An observable W € B(C* ® --- @ Cd4n)
is called entanglement witness if Tr(pW) > 0 for all
separable p’s, but W % 0.

If Tr(Wp) < 0, then p has to be entangled. We say
that W detects entanglement in p.

For any entangled state p there exists an
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separable iff V®-positive (Iz, ® ®)(p) > 0.

A map @ : B(CH) — B(C%) is called completely
positive (CP), if Vd Iy ® ® is positive.

(completely positive and trace-preserving maps are
known as guantum channels).

The Choi-Jamiotkowski isomorphism relates a P
but not CP map ® to entanglement witness Wg.

Positivity of (Iz, ® ®)(p) is equivalent to positive
expected value of a family of entanglement witnesses:
{A® BWg At @ Bt}.
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Entanglement Witness measuring and partial transposition criterion

One can always decompose W € B(C*1 ® --- ® C%n) as

W= ZA<1 @A™, where A; € B(C%) (4)
Transposition is a P but not CP map =
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Other criteria or other maps are necessary to detect
such entanglement.

Bell-type experiment, one expected value instead of
(d1d2)? — 1 like in full-state tomography.
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Realignment criterion and its witnesses

Definition: Trace norm of a real matrix A is

defined as ||Alj1 = Trv AAT.

® for positive A: ||Al|1 = TrA, in general: sum of
singular values,

® [} (@l = 1] - |¢].
2
Let {ng)}jil be an orthonormal hermitian basis of
B(C9) such that Gék) = Iq, /Vdk.

Definition: We define the correlation tensor of p as:
1
C(p)iy,... in =Tl"<pG§1) ®"'®G£:>) (5)

if n=21itis d% X d% matrix of coordinates of p.

Observe, that C'(p1 ® p2) is of rank 1
= [|Clp1 ® p2)ll1 = llp1llus - llp2llms < 1.
Due to triangle inequality and uniformness, the same

bound is valid for any separable state, hence we have
proven:

Realignment criterion: If p (bipartite) is separable,
then [[C(p) 1 < 1.

Property: ||A]1 = mMaxopeo(dy,ds) (AlO) s
(consequence of SVD).

Hence:

c = Tr P eaPoiy<1 (6

IC@)Ih =, max (pizj Hearov)y <1 (6)

YO € O(dy, d2) Tr(p(I - > GV @ ¢P0o%) >0 (7)
)

and the realignment criterion is equivalent to family
of witnesses:

Wo=1-Y 6" ec?ol, (8)
@

parametrised by isometry matrices.



Introduction Realignment criterion and beyond Our result - linear witnesses from non-linear criterion
[e]e]e} oce 00000

Enhanced realignment criterion and other C-based criteria

These witnesses can be strengthen by a non-linear
correction:

— 1
Wo=1-3 G ®GP0Y — _(Tephy + Tiphy). (9)
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Enhanced realignment criterion and other C-based criteria
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Limit of bipartite case  arXiv:2002.00646

We find a family of witnesses corresponding to our criterion:

W0y = azyGo @ GE +2GF @ (D 0GE) +y(>_ 0GHeGH+ > 0*GieGE,  (7)
B>0 B>0 a,5>0

where azy = (\/dA —1+22/dg —1+y2 + acy000>. limg,y—o0 O% = —1, otherwise imWo 4,y ~ I @ I.

We take: .
o:[‘m‘”/gv } (18)

n/ru ‘

up to O(r?)), where u and v are unit vectors satisfying u = Ov//1 — n2/r2 I2%9 Ov and get the limit:
ying

dp —1)cot 0 + (da — 1) tan@ +n?sinfcos6 Iq, Ig

( B
Wee = ® + ncosf ® PGB
2 Vi = Vs \/ ;;O B
+nsind > (Ov)*Ga® ==+ > 0*/G4 ®GE (19)

a>0 Y dB a,3>0
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for all x,y. Hence no correlation tensor based criterion can detect more that the enhanced realignment
criterion.
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Now we consider the limit witnesses:

(dp —1)cot @ + (da — 1) tan6 +n?sinfcosd Iq, Iig 8
W™ = ® +17c0597 ® PGB
2 Vi Vg Vida ﬁz>:0 s

criterion.

+nsing > (Ov) aghg 1B 4 > oGl eck (21)
a>0 dB a,B>0
and look for the minimum of their expected values for a given state p. It is attained for values of

parameters:

_ Vdadp

® O=UVT, where UDVTis a SVD of p—ps®pp o n= o
sin 6 cos

Cost‘)ﬁ + sin 0 OTEA

Spe

d (17HPB”2) Acos O ~ Asin AT ~
® tanf = , /B ——1PBILJ B+ 075
da(1=llpall®) o py—__Vd Vip
Acos6 ~ Asin AT 5
+ 6 H
[ 4502055+ 4me 575,
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First we prove, that (the simple part):

da—1+22 |dg —1+1y2
10— pa ® pp)ll < /1= Tep% /1T = [y (D)1 < 5 (20)
da dg

for all x,y. Hence no correlation tensor based criterion can detect more that the enhanced realignment
criterion. Now we consider the limit witnesses:

(dp —1)cot @ + (da — 1) tan6 +n?sinfcosd Iq, Iig

W = ® +ncosh— ® arers
2 Va - Vg \/d ﬁz>:0 5
+nsing > (Ov) aghg 1B 4 > oGl eck (21)
a>0 dB a,3>0
and look for the minimum of their expected values for a given state p. It is equal to:
V1= los P 1= loall® = llo — p4 @ psll, (22)

Hence if the enhanced realignment criterion detects entanglement in p, then it is detected by a witness of a
form W as well, hence it is also detected by Wo . for large enough x,y.
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® A number of correlation tensor based criteria generalises to R? - parametrised criterion,
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Thank you for your attention!
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